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Abstract— Splines are at the essence of signal processing. Not
only in sampling and interpolation, but also in filter design, image
processing, and multi-resolution analysis. A new class of splines
is presented here. They are referred to as O-splines since their
knots are separated by one fundamental cycle. They are used as
optimal state samplers, in the sense that their coefficients provide
the derivatives for the best Taylor approximation to a given
signal about a time instance or the best Hermite interpolation
between two of them. They are the impulse response of the filters
of the Discrete-Time Taylor-Fourier Transform (DTTFT) filter
bank. Lowpass O-spline coincides with the Lagrange central
interpolation kernel, which converges towards the ideal Sinc
function. It comes with its derivatives which in turn converge
to the ideal lowpass differentiator. The bandpass O-splines are
harmonic splines since they are modulations of the former kernel
at harmonic frequencies. In closed-form, they reduce the compu-
tational complexity of the DTTFT and can be used to design ideal
bandpass filters at a particular frequency. By increasing the order
they define a ladder of spaces very useful for multi-resolution and
time-frequency analysis. Examples are provided at the end of the
paper. Naturally, a new family of wavelets is coming soon from
these splines.

Index Terms— Splines, windows, interpolator-cardinal
splines, Lagrange central interpolation kernel, Discrete
Time Taylor-Fourier transform, oscillating signals, power
oscillations, filter banks, blood pressure oscillometric
waveforms, time-frequency analysis, multiresolution analysis,
data compression.

I. INTRODUCTION

SPLINES [1], [2] are not only at the basis of the essential
digital signal processing operations such as sampling and

interpolation, but also at filtering design [3], image processing
[4], and multi-resolution analysis [5]. They have also been
applied in computer-aided design and computer graphics to
draw smooth curves with minimum curvature, and to repro-
duce graphical models and surface representation.

The best known splines in signal processing are the
B-splines [6], [7]. B-splines of order m are continuous up
to the m − 1 derivative. This property guarantees interpolated
curves with seamless junctions. They have compact support,
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but they are not themselves cardinal splines. However, they
lay the foundation of the mathematical framework to design
most of the modern interpolant cardinal splines, such as the
so-called exponential B-splines or E-splines [8], [9], or linear
combinations of them.

In this paper, a new class of splines is presented. O-splines
were first obtained numerically in [10] to analyze power sys-
tem oscillatory signals. They were also used to analyze elec-
troencephalograms in [11]. Here they are given in closed-form
to reduce the computational complexity in the analysis of
band-limited signals.

O-splines are the impulse responses of the Discrete-Time
Taylor-Fourier Transform (DTTFT) filter bank [10]. They are
the dual functions of its signal model, which is a Taylor
extension of the Discrete Fourier Transform (DFT), in which
the Fourier coefficients are extended to Taylor polynomials.
They are referred to as O-splines because they are cyclic,
i.e. their knots are separated by intervals of one fundamental
cycle, and because they provide optimal coefficients for the
representation of functions in the DTTFT subspace.

O-splines in closed-form are obtained through the factor-
ization of the DTTFT signal model into two operators: one
with the Taylor terms, and the other with the Fourier complex
exponentials. In this decomposition, lowpass O-splines and its
derivatives are found in the dual matrix of the Taylor operator,
and band-pass O-splines are simple harmonic modulations at
the harmonic frequencies of the former ones.

The lowpass O-splines turn out to be given by the Lagrange
central interpolation kernels, which have finite support and
converge to the Sinc function as the order goes to infinity [12].
In consequence, their frequency responses converge to that of
the ideal lowpass filter, and those of their derivatives to those
of ideal lowpass differentiators.

Since O-splines operate in the analysis stage (dual
matrix) [13], they perform together with their derivatives as
optimal signal state samplers, in the sense that their coeffi-
cients at each time instance provide the signal derivatives for
its best Taylor approximation given by the synthesis equation.
This is an important difference with respect to most of the
splines, whose literature is consecrated to their performance
as interpolators [14].

The most recent example of cardinal interpolation splines
are the many-knots (MK) splines [15]. They are symmetric
FIR filters with samples at half-integers and obtained by a
linear combination of the B-spline of the same order. They
have two polynomial pieces per unit interval, with twice
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as many knots (hence its name) per unit interval. Even if
MK- and O-splines share integer finite support, O-splines have
nothing to do with B-splines. Their cardinality results directly
from the adjoint operator of the Taylor-Fourier expansion.
In consequence, O-splines are applied as sampling operators,
the inverse of the interpolating ones. They obtain the best
Taylor-Fourier coefficients, with physical meaning of position,
speed, acceleration, etc. By being in the dual biorthogonal
basis, they establish an hybrid analysis-synthesis process.
These are the main distinctions that make O-splines unique,
optimal, useful, and effective.

More recently, MK-splines were generalized into
GMK-splines [16], an extensive family of splines, by relaxing
the half-integers of the samples to rational numbers. Even if
this relaxation produces some filters with non-flat passband
gain and some with fractional (noninteger) support, the n-th
order GMK splines have the continuity of order n − 1.

DTTFT signal model was conceived as an extension from
the traditional concept of phasor (Fourier coefficient) to the
one of dynamic phasor for capturing oscillations with bet-
ter accuracy. Its extended model corresponds to signals in
the span{tne j2πhF1 t }h=− N

2 ,..., N
2 −1;n=0,...,K where F1 is the

fundamental frequency, and N is the number of harmonics
within the sampling frequency band. This corresponds to
the span of the set of poles with multiplicity K + 1 at
N harmonic frequencies [9]. In this regard, O-splines are
imaginary exponential splines, or Fourier splines and they hold
the properties and theorems of exponential B-splines in [8].

The synthesis equation of the DTTFT performs a Taylor
interpolation over the support of the spline, but with the
estimated derivatives it is also possible to do Hermite inter-
polation between consecutive cyclic states. The state sampler
endowed with the Hermite interpolator provides an optimal
data compression algorithm for oscillations and reduces the
computational cost with a sufficiently small error controlled
by the order of the spline and the degree of the Hermite
spline.

In what follows, DTTFT signal model is presented in
Section II. Lowpass O-splines are obtained in closed-form
in Section III, together with their derivatives and fre-
quency responses. Then, harmonic O-splines are established in
Section III-D. In Section IV, O-splines are used to analyze and
reconstruct a sinusoid, to denoise a frequency modulated mode
in a real power oscillation (PO) [17], [18], and to separate
the oscillatory modes of a real blood pressure oscillometric
waveform (BPOW) [19]. Finally, conclusions are presented at
the end of the paper.

II. DISCRETE-TIME TAYLOR-FOURIER TRANSFORM

DTTFT O-splines were introduced in [10] in matrix form.
In this paper, they are obtained in closed form. This for-
mulation helps to reduce their computational complexity and
provides a sequence of functions whose spectra converge to
the ideal lowpass filter.

Taylor-Fourier signal model is obtained by relaxing the
Fourier coefficients to complex time functions of the form
ξh(t) = ah(t)e jϕh(t), which carry the complex envelope at each
hth harmonic frequency. Hence, the extended Fourier signal

model becomes:

x(t) =
∞�

h=−∞
ξh(t)e j2πhF1t , −CT1

2
≤ t ≤ CT1

2
(1)

where F1 is the fundamental frequency in H z, T1 is its period
(T1 = 1

F1
) in seconds, and C is the number of cycles.

In this way, the harmonics become narrowband signals [20].
The complex envelope ξh(t) at each harmonic frequency is
then approached by the best Taylor polynomial of K -th degree

ξ
(K )
h (t) = ξh(t0)+ξ̇h(t0)(t − t0) + · · · + ξ

(K )
h (t0)

(t − t0)K

K ! ,

(2)

in the least mean squares (LMS) sense on each observation
interval, centered at the time instance t0.

By taking N samples per fundamental period, the synthesis
equation of the DTTFT subspace can be written from (1)
and (2) as follows:
x = �ξ

=

⎛
⎜⎜⎜⎝I

⎛
⎜⎜⎜⎝

WN

WN
...

WN

⎞
⎟⎟⎟⎠ T

⎛
⎜⎜⎜⎝

WN

WN
...

WN

⎞
⎟⎟⎟⎠ · · · 1

K ! T
K

⎛
⎜⎜⎜⎝

WN

WN
...

WN

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ξN

ξ̇N
...

(K )
ξ N

⎞
⎟⎟⎟⎟⎠
(3)

where the (K +1)N × (K +1)N matrix � contains the basis vec-
tors, and the parametric N × 1 sub-vectors ξ

(k)
N , k = 0, 1, . . . K ,

contain the first K derivatives of the harmonic dynamic
phasors ξN (h), h = 0, . . . , N − 1 in subvector ξN . The
N × N submatrix WN is the Fourier matrix of the Discrete
Fourier Transform (DFT) with harmonic columns wh =
e j 2π

N hn; h, n = 0, . . . , N − 1. And finally (K +1)N × (K +1)N

diagonal matrix T contains the samples of the first Taylor term
in in an interval of C = K + 1 fundamental cycles. See [10]
for more details of this formulation.

Notice in (3) that by increasing the Taylor order K by
one, the size of the model increases by N since each Taylor
term affects the full set of harmonics, and therefore another
fundamental cycle of data is needed at the bottom of the �
matrix. The diagonal Taylor matrices perform the Hadamard
products of the Taylor terms with the Fourier columns in WN .

In [10], it was shown that matrix � can be factorized as
follows:
� = ϒ�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I Y1 . . .
1

K !Y K
1

I Y2 . . .
1

K !Y K
2

...
...

. . .
...

I YC . . .
1

K !Y K
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

WN 0 . . . 0
0 WN . . . 0
...

...
. . .

...
0 0 . . . WN

⎞
⎟⎟⎟⎠ ,

(4)

This factorization is achieved because columns of WN are
periodic. Diagonal N × N submatrices Yc, c = 1, 2, . . . , C ,
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are consecutive submatrices through the diagonal of matrix
T in (3). They contain successive pieces of one cycle (N
samples) of the first Taylor term in T . The Hadamard product
in (3) is obtained in (4) block by block, of each column of
submatrices in ϒ , with the diagonal submatrices WN in �,
reconstructing the corresponding vertical submatrices in (3).

The best LMS coefficients of the projection of x onto
the Taylor-Fourier subspace are provided by the following
equation:

	ξ = 
�H x (5)

in which 
� is the dual matrix [21] of �, which is given by


� = �(�H�)−1. (6)

For � = ϒ� in (4), we have:

� = ϒ(ϒ H ϒ)−1 �

N
= 
ϒ �

N
, (7)

which means that columns in 
� are harmonic modulations
of columns of diagonal submatrices in 
ϒ , i. e. each column
of diagonal submatrices in 
ϒ contain a common envelope
(the lowpass O-spline and derivatives) modulated at the set
of harmonic frequencies in WN .

Since ϒ is an invertible square matrix, its dual is simply
the transpose of its inverse:


ϒ = ϒ−T = Ad j (ϒ)T

|ϒ| , (8)

which is simply the matrix of cofactors Ad j (ϒ)T divided by
the determinant |ϒ|.

The multiplication of diagonal submatrices Y k
i in the Taylor

operator ϒ yields the pointwise product of their diagonals.
In consequence, ϒ can be compacted in a C × C matrix by
substituting each diagonal submatrix Y k

i by the kth Taylor term
as a time function evaluated on its corresponding i th segment.
The inverse of that compact matrix can then be easily obtained
since those functions perform as cofactors in the inversion.

In the following section, the K th lowpass O-spline and
its first derivatives are obtained in closed-form from the
numerator in (7) when each submatrix WN in � is reduced to
its first column of ones. The obtained submatrix is denoted by
�0 since this operation converts the diagonals in each row of
ϒ into a vector that concatenates such diagonals in a piecewise
polynomial. Diagonals in the first row provide the spline, and
those of subsequent rows its first derivatives. Bandpass or
harmonic O-splines are simple modulations of the lowpass
O-spline and its derivatives at each harmonic frequency.

III. LOWPASS O-SPLINES IN CLOSED FORM

In the following subsections we obtain the lowpass
O-splines and first derivatives in 
�0 by solving in colsed-form
the inverse matrix of ϒ in (8) and by concatenating each one
of its rows in one vector of 
�0. These vectors contain the
common envelopes shared by the harmonic O-splines.

For K = 0, we have: t1 = t[− T1
2 ,

T1
2 )

and �
(0)
0 = 1, and

therefore 
�(0)
0 = 1. The system is orthogonal and the O-spline

is a rectangular pulse.


ϕ(0)
0 (t) =

⎧⎨
⎩1 − T1

2
≤ t ≤ T1

2
,

0 otherwise.
(9)

For K = 1, t1 = t[−T1,0), and t2 = t[0,T1) = t1 +T1, we have

�
(1)
0 =

�
1 t1
1 t2

�
(10)

with |�(1)
0 | = t2 − t1 = T1. Then, we have:


�(1)
0 =

�
t2 −1

−t1 1

�
T1

=
�

u1 + 1 −F1
−(u2 − 1) +F1

�
(11)

where un is the normalized time: u = tn/T1. Its columns are
a triangular pulse:


ϕ(1)
0 (u) =

⎧⎪⎨
⎪⎩

u + 1 for − 1 ≤ u < 0,

1 − u for 0 ≤ u < 1,

0 otherwise,

(12)

and the scaled Haar wavelet: −F1
̇ϕ(1)
0 (u).

For K = 2, we have

�
(2)
0 =

⎛
⎝1 t1 t2

1 /2
1 t2 t2

2 /2
1 t3 t2

3 /2

⎞
⎠ . (13)

with t1 = t[− 3T1
2 , − T1

2 )
, t2 = t1 + T1, and t3 = t1 + 2T1. In this

case |�(2)
0 | = T 3

1 , and


�(2)
0 =

⎛
⎜⎜⎜⎝

1

2
(u1 + 2)(u1 + 1) −F1(u1 + 3

2
) F2

1

−(u2 + 1)(u2 − 1) 2F1u2 −2F2
1

1

2
(u3 − 1)(u3 − 2) −F1(u3 − 3

2
) F2

1

⎞
⎟⎟⎟⎠ .

(14)

Notice in (11) and (14), that is sufficient to calculate the
first column of the dual matrix, since the following ones are
the negative derivative of the previous one scaled by constant
factors. In fact, since the first column has even symmetry, only
its first half is needed.

From (13) it can be seen that �
(K )
0 is a Vandermonde matrix

with scaled columns. In Appendix A it is proved that its

determinant is |�(K )
0 | = T

K (K+1)
2

1 .
Finally, for K = 3, t1 = t[−2T1,−T1) and tn = t1 + (n − 1)T1

n = 2, 3, 4. We have |�(3)
0 | = T 6

1 . Its first dual column is:


ϕ(3)
0 (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

6
(u + 3)(u + 2)(u + 1) for − 2 ≤ u < −1,

−1

2
(u + 2)(u + 1)(u − 1) for − 1 ≤ u < 0,

1

2
(u + 1)(u − 1)(u − 2) for 0 ≤ u < 1,

−1

6
(u − 1)(u − 2)(u − 3) for 1 ≤ u < 2,

0 otherwise.

(15)

and the following ones are: −F1
̇ϕ(3)
0 , F2

1 
̈ϕ(3)
0 , and −F3

1

...
ϕ(3)
0 .

Authorized licensed use limited to: CONRICYT Admin Account. Downloaded on January 25,2021 at 17:01:51 UTC from IEEE Xplore.  Restrictions apply. 



DE LA O SERNA: DYNAMIC HARMONIC ANALYSIS WITH FIR FILTERS DESIGNED WITH O-SPLINES 5095

Fig. 1. Odd order lowpass O-splines and their spectra at the bottom.

1) K th Lowpass O-Splines in Factored Form: In general,
the polynomial in the cth time interval from left to right of
the K th lowpass O-spline is given by

pc(u) = 1

Dc

K+1�
n=1
n �=c

(u + n − c), c = 1, 2, . . . , K + 1 (16)

in which the constant Dc guarantees unit value at u = 0 for
each polynomial. One can recognize that the set of polynomi-
als in (16) coincides with the set of K th Lagrange polynomials
interpolating a Dirac Kronecker sequence in windows of size
K containing its central unit value. The lowpass O-spline is
tiled with a piece of each of those polynomials, and it is
identical to the K th Lagrange central interpolation kernel [12].
The factored form in (16) allows the calculation of any
O-spline, piece by piece, avoiding the singularity problem
found in the inversion of the numeric Taylor operator in (8)
when T1 is small.

In [12], [22] and [23] is shown that any piece of the
Lagrange central interpolation kernel converges to the corre-
sponding piece of the Sinc function.

A. Lowpass O-Splines and Frequency Responses

The top plot in Fig. 1 illustrates several odd-order lowpass
O-splines, together with the Sinc function, and their corre-
sponding spectra are represented at the bottom. As can be seen,
they provide a family of finite impulse response FIR filters
that converge to the ideal lowpass filter. Each polynomial
piece approximates a lobe of the Sinc function. The frequency
response has a monotonic bandpass gain and small ripples on
the stopband, similar to the IIR Type II Chebyshev filters. Even
order lowpass O-splines also converge to the Sinc function
but with discontinuities that produce higher ripples in their
stopband as can be seen in Fig. 2.

Fig. 3 shows the spectra of odd O-splines in the bottom plot
of Fig. 1, but in dB to assess their performance in harmonic
analysis. For K = 200, the approximation to the ideal lowpass
filter is quite remarkable, since the first sidelobe gain is at
−47dB, and the stopband gains are at −326dB, and for K = 9
they are at −34 dB and −350dB, respectively.

Fig. 2. Even order lowpass O-splines and their spectra at the bottom.

Fig. 3. Odd order lowpass O-splines and their spectra in dB.

Finally, comparing quadratic and cubic MK-splines with the
same support cubic and quintic O-splines in Fig. 4, it is found
that both types have flat passband, with the wider flat gain
for the quintic O-spline. The first sidelobe of the MKs is at
−32 and −42 dB, while that of the Os is at −30 and −31.5
dB, respectively. However, MK-splines have not maximally
flat stopbands at harmonics as the O-splines do. Measured at
the first harmonic the gains are at −60 and −64 dB for the
MKs and at −223 and −322 dB for the Os, respectively. This
property is crucial in harmonic analysis.

B. Lowpass O-Spline and Their Derivatives

For a given order, the dual matrix carries not only the
lowpass O-spline but also its derivatives. The first row of plots
in Fig. 5 shows the first lowpass O-splines and their columns
the derivatives with increasing order from top to bottom.

By using a vertical set as impulse responses in a filter
bank, they perform state sampling (or resampling). Notice that
successive derivatives of an O-spline are linear combinations
of translates of the precedent ones, forming a ladder of
subspaces since successive derivatives are in state subspaces of
the lower level. The last derivative in the diagonal constitutes
the subspace with the inferior level V0, spanned by translates
of ϕ

(0)
0 (t), then the elements in the first supra-diagonal are
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Fig. 4. Quadratic and cubic MK-splines compared with cubic and quintic
O-splines.

Fig. 5. At the top, the K -th lowpass O-splines for K = 0, 1, 2, and, 3, and
their derivatives at the bottom.

in V1, the subspace of linear piecewise functions, spanned by
translates of ϕ

(1)
0 , and so on, up to the O-spline with the highest

grade.
For the third O-spline, we have the following derivatives in

terms of lower degree O-splines:
ϕ̇0

(3)(u) = F1[ϕ(2)
0 (u + 1

2
)−ϕ

(2)
0 (u − 1

2
)], (17)

its second derivative:
ϕ̈

(3)
0 (u) = F2

1 [ϕ(1)
0 (u + 1) − 2ϕ

(1)
0 (u) + ϕ

(1)
0 (u − 1)] (18)

and its third derivative:
...
ϕ(3)

0 (u) = F3
1 [ϕ(0)

0 (u + 3

2
) − 3ϕ

(0)
0 (u + 1

2
)

+ 3ϕ
(0)
0 (u − 1

2
) − ϕ

(0)
0 (u − 3

2
)]. (19)

C. Impulse and Frequency Response of Differentiators

The top curve of Fig. 6 shows the impulse responses of 3rd
and 5th first differentiators, 
̇ϕ(3)

0 (u), and 
̇ϕ(5)
0 . They converge

to the derivative of the Sinc function shown with dashed line;
while their frequency responses, at the bottom, converge to that
of an ideal bandpass first differentiator. Indeed, if H (0)

h ( f ) is
the frequency response of the h-th O-spline, then the first dif-
ferentiator frequency response is H (1)

h ( f ) = ( j2π f )H (0)
h ( f ),

Fig. 6. Impulse and frequency responses of the first differentiators for K = 3,
K = 5, and the ideal one in dashed line.

Fig. 7. Impulse and magnitude responses of the second differentiators, for
K = 3, and the ideal one in dashed line.

i.e. a linear gain truncated by the frequency response of the
hth O-spline, as shown by the dashed line.

Similarly, the impulse responses of the second differentia-
tors 
̈ϕ(3)

0 (u), and 
̈ϕ(5)
0 are shown in the top curve of Fig. 7.

As K → ∞ they converge to the second derivative of
the Sinc function; while their frequency responses, at the
bottom, have a truncated parabolic gain on their passband. The
frequency response of the second differentiator is H 2

h ( f ) =
( j2π f )2 H 0

h ( f ), i.e. a truncated quadratic gain, as shown by
the dashed line.

D. Harmonic O-Splines

Harmonic O-splines are simply modulated versions of the
lowpass splines at a particular harmonic frequency. We have:


ϕ(K )
h (u) = 
ϕ(K )

0 (u)e j2πhu, h = 0, 1, . . . , N − 1. (20)

The zero-crossings of the complex exponential function coin-
cide with those of the O-splines, preserving its cyclic property.

IV. RESULTS

In this section, 3rd O-splines are used as samplers of a
sinusoid of low frequency and its derivatives, in the extraction
of a frequency modulated mode of a real power system [10],
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Fig. 8. Sampled and interpolated cosine function (top) and its first two
derivatives (middle and bottom).

Fig. 9. Error of the synthetized signal, first and second derivatives with the
Taylor signal model.

and in the analysis of oscillatory modes in the blood pressure
oscillographic waveform (BPOW) [24]. Real signals with
strong frequency fluctuations are used to assess the perfor-
mance of the proposed method in real scenarios. The O-spline
samplers are applied every fundamental cycle, and Taylor or
Hermite interpolation is applied in the reconstructed signals.

A. Sampled and Interpolated Signals

The continuous sinusoidal signal s(u) = cos(u/4) and its
first two derivatives are analyzed and reconstructed with the
proposed method. Since its spectrum is located under the ideal
differentiator gains, the interpolation errors are small. This
illustrates the good performance of the proposed technique.
The top plot of Fig. 8 shows the signal and its first two
derivatives with the corresponding estimated samples marked
with circles. The standard deviation of the sampling errors is of
4.2×10−5, 1.05×10−5, and 4.59×10−4 for the function, first
and second derivative, respectively. The interpolation errors
achieved when those samples are interpolated with Taylor
interpolations of 3rd, 2nd and 1st order are shown in Fig. 9.
The obtained maxima interpolation errors are 6 × 10−5, 2.1 ×
10−4, and 5 × 10−4, respectively.

In addition to the Taylor interpolation, the signal samples are
interpolated with the quintic Hermite scheme (Appendix B),

Fig. 10. Interpolation errors with samples and with exact data.

with the O-spline, and with the Keys cubic spline [25]. The
interpolation errors are shown in the top plot of Fig. 10 and
compared with the Taylor interpolation error. The smaller
maximum error is achieved with the Taylor interpolation (with
a maximum error of ±6×10−5) and with the quintic Hermite
interpolation which is almost the envelope of the Taylor error
and then followed by the O-spline with a maximum error of
about 1.4×10−4. The worst interpolation error is achieved by
the Keys cubic spline, with a maximum error of 1.2 × 10−2,
which is even out of the range of the former ones.

To evaluate the performance of the optimal proposed
method, the error achieved with the Taylor and the quintic
Hermite interpolators when the exact samples of the function
and derivatives are used is plotted at the bottom plot of Fig. 10.
Both Taylor and Hermite error are zero flat around the poles.
The maximum Taylor error is of 10−5, while the Hermite one
5 × 10−9. By comparing this plot with the top one in Fig. 9,
it can be seen that the proposed method achieves an error only
six times greater than the theoretical one with the same order
K = 3.

B. Power Oscillation

The power oscillation analyzed in [10] is taken as a second
example. It is obtained from three-phase voltages and currents,
sampled at 20 samples per fundamental period, in a power
system of 50H z, and illustrated in the top plot of Fig. 11,
with its spectrum in the middle. The 3rd O-spline with time
compression of two, and a bandwidth of 100Hz as shown at
the bottom, is used to extract the oscillation. In [10] it is
demonstrated that it is in fact a frequency modulated mode,
going from zero to 15.6Hz.

The signal is sampled each half fundamental cycle using (5)
and then Taylor interpolated in those intervals with (3). The
result is shown in Fig. 12. The top plot shows the interpo-
lated mode with Taylor polynomials. Its varying frequency
is apparent since the period of the oscillation diminishes very
fast at the end of the window, therefore the noise at the middle
plot is just the difference between the original signal and the
interpolated one. The bottom plot shows the reconstructed
signal superposed to the original one. The reconstruction is
almost perfect despite the high noise localized mainly during
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Fig. 11. PO (top plot) and its spectrum (middle plot), and frequency response
of interpolating filter (at the bottom).

Fig. 12. Frequency modulating mode (top plot) and harmonics about 115H z
(middle plot), with the original and reconstructed PO.

the fault. The variance of the difference between the Taylor
interpolated power oscillation and its instantaneous estimates
obtained with the O-spline state sampler applied in successive
time instances is equal to 0.0127, which is lower than the
0.32% of the maximum amplitude of the oscillation.

C. Blood Pressure Oscillometric Waveform

Estimation of systolic and diastolic blood pressure from
numerical records of BPOWs [24] is an interesting challenge
due to the complex structure of these signals. The extraction
of the fundamental mode is crucial since it shows the main
pulsation of the heart. Both pressures are estimated from
its amplitude envelope. The other modes arise due to the
non-linearity of the cuff.

The top plot of Fig. 13 shows the analyzed BPOW sig-
nal, sampled at 150 samples per second. Its basic temporal
structure consists of repetitive peaks with hanging parabolic
shapes, jumping up and down. Its spectrum is shown at the
bottom with the frequency responses of the harmonic splines
used in the decomposition. They are obtained by modulating
(as indicated in III-D) the lowpass 3th O-spline dilated twice
(8-cycles width) to halve its bandwidth. Samples are obtained
by the dot product of the signal with successive translates of
the corresponding harmonic 3rd O-splines and derivatives, and
modes are reconstructed by its instantaneous ξ estimates.

Fig. 13. BPOW (top), its spectrum and filter bank frequency responses
(bottom).

Fig. 14. Oscillographic decomposition of the BPOW. From top to bottom
the predominant modes (0th,1st,2nd, and 3rd) followed by the signal with
inter-harmonic frequencies. At the bottom, the synthetic signal with perfect
reconstruction.

TABLE I

NORMALIZED MEAN SQUARED ERROR AS CONSECUTIVE

MODES ARE TAKEN INTO ACCOUNT

BPOW predominant modes are shown in the first plots of
Fig. 14, followed by the residual signal, and finally, at the
bottom, the synthetic signal is compared with the original one.
Notice that the 0th mode oscillates at a very low frequency.
The envelope of the first mode has the expected parabolic
shape. On the other hand, the residual signal has the crankshaft
shape that explains the jumps of the parabolic shapes in the
top plot of Fig. 13.

Table I shows the mean squared error (MSE) as a percentage
of the BPOW energy as consecutive modes are aggregated into
the reconstructed signal, achieving perfect reconstruction when
all the components are included. Discrepancies are due to the
complexity of the fluctuations of the BPOW signal, whose
modes are not perfectly band-limited, as can be seen in the
bottom plot of Fig. 13.
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V. DISCUSSION

The Lagrange central interpolation kernel is used in the liter-
ature as an interpolator [14], [22] or as a kernel approximating
the Sinc function [12], but not as an analysis kernel, and much
less as state-space sampler. This is the contribution of this
paper, together with the closed-form derivation of the O-spline
functions, which reduces the computational complexity of the
DTTFT, especially when the signal has few harmonics, as the
cases illustrated in the former section.

In [12] the interpolatory performance of the Lagrange
central interpolation kernel and the fundamental cardinal
spline [6] of successive orders is compared. However, this
comparison is invalid in the analysis application since fun-
damental splines have infinite support, while the Lagrange
kernels have a finite one.

The proposed method differs also from the one in [13],
since the dual function of the interpolatory basis has not finite
support. It also differs from the one used in [10], in which only
the analysis equation (5) is used with O-spline and derivatives.

VI. CONCLUSION

O-splines are the impulse response of the DTTFT bandpass
filters. They are modulations of the lowpass O-spline at the
harmonic frequencies. They perform as ideal lowpass and
bandpass filters with ideal differentiator gains and are used
as optimal space samplers of band-limited signals, providing
an optimal data compression algorithm for oscillations, with a
sufficiently small error graduated by the degree of the spline.
They are very useful to catch oscillations and in applications
in which not only the signal but also its derivatives need to
be estimated or interpolated, offering a powerful optimal state
estimator implemented by FIR filters.

APPENDIX A
VANDERMODE MATRIX DETERMINANT

Given the Vandermode Matrix:

VK =

⎛
⎜⎜⎜⎝

1 c1 c2
1 . . . cK−1

1
1 c2 c2

2 . . . cK−1
2

...
...

...
. . .

...

1 cK c2
K . . . cK−1

K

⎞
⎟⎟⎟⎠ , (21)

it is known that:

det(VK ) = [
K−1�
k=1

(cK − cK−k)] det(VK−1). (22)

In the case of �
(K )
0 , tK − tK−k = kT , and

det(�(K )
0 ) = T K det(�(K−1)

0 ) (23)

since the factorials of Taylor terms in columns of �
(K )
0 cancel

the factorials in the determinant of the Vandermonde matrix.
Therefore:

det(�(K )
0 ) = T K T K−1T K−2 · · · T 2T = T

K (K+1)
2 . (24)

with det(�(0)
0 ) = 1.

APPENDIX B
QUINTIC HERMITE INTERPOLATOR

We have:
f (x) = y0ϕ0(u) + ẏ0ϕ1(u) + ÿ0ϕ2(u) (25)

+ y1ϕ3(u) + ẏ1ϕ4(u) + ÿ1ϕ5(u) (26)

with:
ϕ0(u) = 1 − 10u3 + 15u4 − 6u5 (27)

ϕ1(u) = u − 6u3 + 8u4 − 3u5 (28)

ϕ2(u) = (u2 − 3u3 + 3u4 − u5)/2 (29)

ϕ3(u) = 10u3 − 15u4 + 6u5 (30)

ϕ4(u) = −4u3 + 7u4 − 3 ∗ u5 (31)

ϕ5(u) = (u3 − 2u4 + u5)/2. (32)
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